ZOOL0GY 331
Lecture Outline

A. General metabolic functions
 I. Nutrition
 Foods, food factors, and their sources
 General foods
 Essential foodstuffs
 Feeding mechanisms
 Mechanisms for small particles
 Mechanisms for large particles
 Mechanisms for soft tissues and fluids
 Digestion
 Intracellular
 Extracellular
 Digestive enzymes

II. Respiration
 Aerobic and anaerobic respiration
 Factors influencing respiration
 Respiration in water
 Without specific organs
 With specific organs
 Transitional types between aquatic and aerial respiration
 Respiration in air
 Gills
 Lungs
 Tracheal systems
 Respiratory functions of the blood
 Transport of carbon dioxide
 Transport of oxygen
 Adaptation of circulation to respiratory needs

III. Body fluids: their composition, properties and circulation
 Composition and properties
 Chemical constitution
 Phagocytosis
 Coagulation
 Immunological reactions
 Circulation
 Without a true vascular system
 With a vascular system
 Physiology of hearts
 External control of heart rhythm
 Physiology of blood vessels

IV. Body fluids: their regulation
 Osmotic and ionic regulation
 Aquatic organisms
 Marine invertebrates
 Fresh-water invertebrates
 Vertebrates
 Terrestrial organisms
 Invertebrates
 Vertebrates
 Elimination of nitrogen
 Aquatic organisms
 Terrestrial organisms
 Acid-base regulation
 Regulation of sugar etc.
Zoology 331 Lecture Outline

B. Integration and Reaction

V. Receptor physiology and response to stimuli
 photoreceptors
 mechanoreceptors
 chemoreceptors
 stimulation organs

VI. Effector physiology
 contractile elements
 glands
 cilia and flagella
 ameboid activity
 chromatophores
 electric organs
 photogenic organs
 trichocysts and nematocysts

VII. Nervous mechanisms of integration
 neuroid transmission
 nerve conduction
 physiology of the synapse
 specific systems and their physiology
 the protozoan system
 the parazoan system
 the coelenterate system
 the annelid system
 the arthropod system
 the vertebrate system
 analysis of locomotory mechanisms
 intracellular
 dermomuscular
 ambulacral
 skeleto-muscular

VIII. Endocrine mechanisms of integration
 circulating hormones
 reproduction and development
 general metabolic regulation
 responses of effector organs
 diffusion hormones
 acetylcholine
 adrenaline
In view of the limited facilities available for conducting laboratory work in comparative physiology and also because of the very nature of the subject, we have decided to divide the class into groups of 2, 3 or 4, each group of which will conduct one project approximately 13 hours in length, selected after consultation with the instructor, in each of the following areas of comparative physiology:

I. Nutrition and respiration
II. Body fluids: their composition, properties, circulation and regulation
III. Receptor and effector physiology, and behavior
IV. Integration (nervous and humoral)

After each group has completed its project it will be given 15 minutes during the 2:30 hour on Monday or Tuesday to report its methods (demonstrations whenever possible), results and conclusions to the remainder of the class.

Suggested Laboratory Experiments

I. NUTRITION AND RESPIRATION
 1. Feeding mechanisms in animals
 2. Comparative study of digestion in animals
 3. Comparative study of digestive enzymes
 4. Comparative study of basal metabolic rates
 5. O_2 and CO_2 partial pressures upon respiratory rhythms and O_2 consumption
 6. The effect of temperature upon respiratory rates
 7. Comparative O_2 dissociation curves for bloods
 8. Physiology of fish swimbladders

II. BODY FLUIDS: THEIR COMPOSITION, PROPERTIES, CIRCULATION AND REGULATION
 1. Comparative study of osmotic pressures of bloods
 2. Comparative study of phagocytosis and blood clotting
 3. Comparative physiology of hearts
 4. Osmotic regulation in protozoa
 5. Osmotic regulation in higher invertebrates and lower vertebrates
 6. Conservation of water in terrestrial forms
 7. Buffer capacities of body fluids
 8. Comparative study of nitrogen excretory products

III. RECEPTOR AND Effector PHYSIOLOGY, AND BEHAVIOR
 1. Properties of photoreceptive mechanisms of Daphnia, Drosofila, Limax, etc.
 2. Comparative physiology of muscle contraction
 3. Physiology of ciliary movement
 4. Physiology of amoeboid movement
 5. Chemoreception, statoreception, and thermoreception
 6. Background selection in animals
 7. Experimental modulation of animal responses
 8. Kineses, taxis, and transverse orientations

IV. INTEGRATION
 1. Coelenterate neuromuscular physiology
 2. Arthropod neuromuscular physiology
 3. Frog neuromuscular physiology
 4. Central nervous physiology of animals
 5. Mechanisms for locomotion
 6. Hormonal control of molt, pupation, and metamorphosis
 7. Hormonal control of chromatophores and retinal pigments
 8. Hormonal control of respiratory, water, and carbohydrate metabolism
 9. Organismic rhythmicity and arrhythmicity
One Hour Exam.
Zoology 351.
Tuesday, July 15th.

Answer any four:

1. Give an account of proteases and their distribution through the animal kingdom.

2. Outline, briefly, types of mechanisms for feeding upon fine particles. Give in some detail the operation of a molluscan ciliary and a crustacean setose mechanism.

3. Discuss factors influential in modifying the rate of oxygen consumption of animals.

4. Compare the properties of hemoglobins of a number of animals taken from environments widely different from one another in the availability of oxygen.

5. What are some of the physiological adaptations of birds and mammals to diving. Explain the significance of each.